PIXEL STRUCTURE TEST RESULTS

MAY 27, 1999
INNER DETECTOR COOLING REVIEW
SESSION 4

E. ANDERSSEN, G. HALLEWEL, M. OLCESE, V. VACEK

OVERVIEW

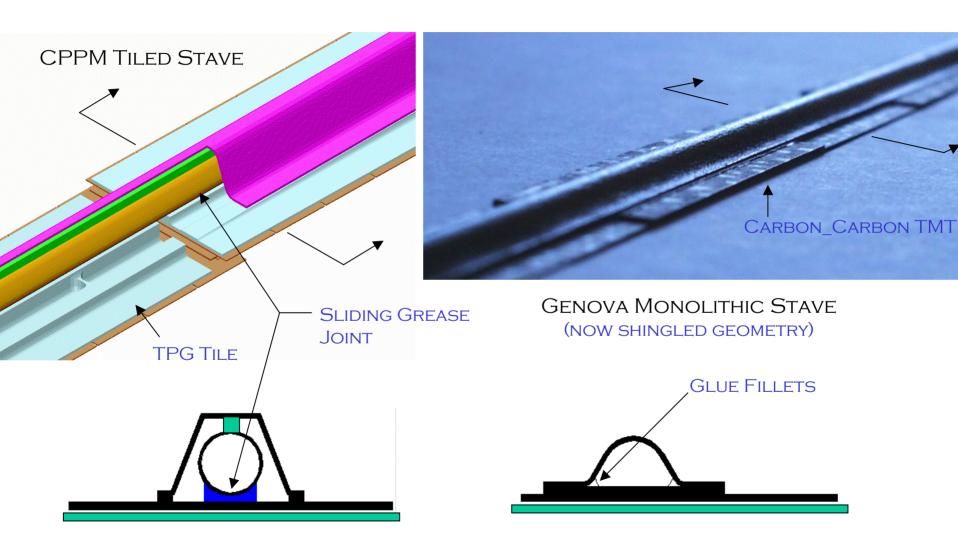
- DESCRIPTION OF VARIOUS STRUCTURES WHICH HAVE BEEN TESTED
- HISTORICAL MEASUREMENTS FOR COMPARISON (0.6W/cm²)
 - CPPM SLIDING ALUMINUM TUBE STAVE (EVAPORATIVE)
 - ORIENTED SECTOR TESTS (EVAPORATIVE)
 - METHANOL/WATER TESTS OF SAME/SIMILAR STRUCTURES
- MEASUREMENTS AT NEW POWER DENSITY (0.83W/cm²)
 - GENOVA STEPPED STAVE GEOMETRY WITH SILICON
 - FSLI SECTOR 4(?)
- OBSERVATIONS

TDR Power:

STAVE: 73.0W

SECTOR: 36.5W

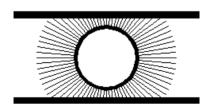
NEW POWER:

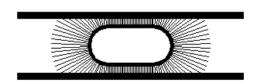

STAVE:

107W

SECTOR: 49.5W

THE STAVES (DOMINANT VARIATIONS)


DISKS, A RETROSPECTIVE

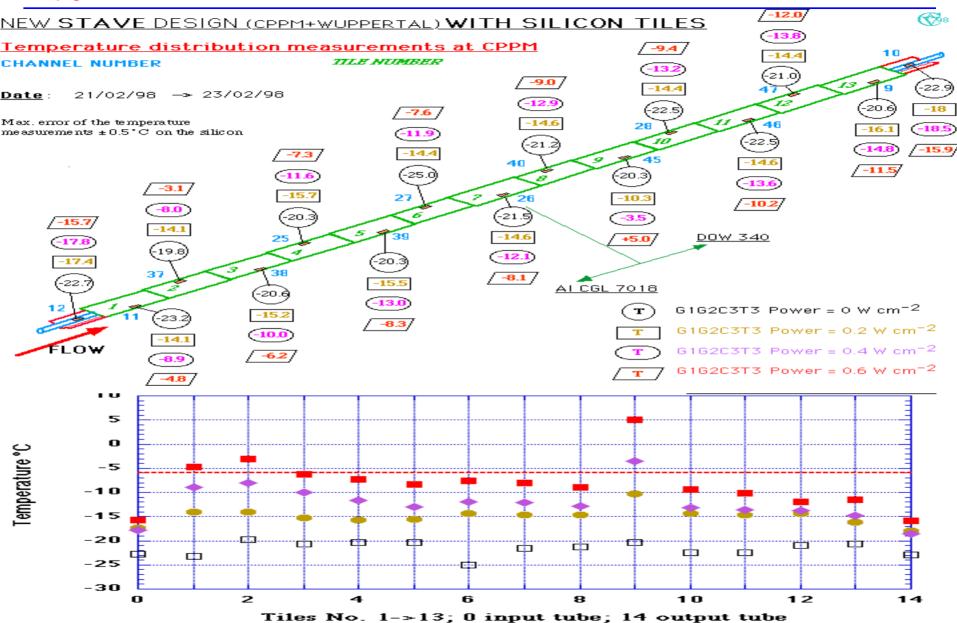

ESLI SECTORS 4-7

LBNL AL-TUBE 3

ESLI SECTORS 8 & 9

SECTOR DESIGNS HAVE CONVERGED AT ESLI 8/9 AND AL-TUBE 4

HEATERS AND HEAT LOADS


- HEATERS HAVE BEEN OF TWO TYPES-SILICON AND "MINCO"
 - SILICON HEATERS HAVE SAME FORM FACTOR AS MODULE, MOUNTS
 SIMILARLY AND IS OF THE SAME GENERAL MATERIAL-MEASUREMENTS
 MORE BELIEVABLE AS LESS EXTRAPOLATION IS NECESSARY
 - MINCO HEATERS HAVE LOCALIZED RESISTIVE ELEMENTS EMBEDDED IN AN INSULATOR
 - HEATER TYPE NOT GENERALLY RECORDED WITH DATA
- MEASURED TEMPERATURE DROP INTO COOLANT IS AFFECTED BY HEATER TYPE AND HOW IT IS ATTACHED
 - IMPEDANCE OF HEATER ATTACHMENT AFFECTS MEASURED TEMPERATURE
 - COMMUNITY HAS NARROWED DOWN TO A SELECT FEW THERMAL COMPOUNDS AND ASSOCIATED PROPERTIES
 - HEATER NON-UNIFORMITY ON LEVEL OF PT 1000 FORM FACTOR LIKELY FOR MINCO STYLE HEATERS

HEAT LOADS

- SECTORS AND STAVE HAVE APPROXIMATELY THE SAME HEAT INFLUX PER UNIT LENGTH OF COOLING TUBE (FACTOID)
 - Was ~1W/cm @0.6W/cm^2
 - STAVE HAS TWICE THE FLUX BECAUSE IT COMES IN FROM ONLY ONE SIDE.
- 0.6W/cm² (TDR Full Power)
 - STAVE POWER WAS 72W
 - Sector Power was 36.4W
- 0.83W/cm² (Worst Case Estimate)
 - STAVE POWER 107W
 - SECTOR POWER 49.5W

MAY 99 ID COOLING REVIEW PIXEL DETECTOR INTEGRATION

F -11.0 B -17.2

F -14.6 B-18.1

F -13.3 B -15.5

Outlet-18.1 °C

AD590

F - front side

B - back side

F -14.1 B-17.0

Inlet -15.1 °C

F -15.8 B -14.9

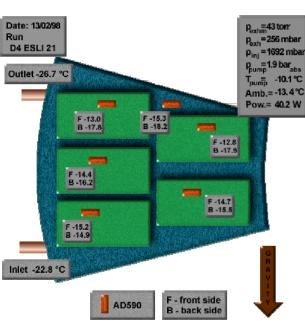
F -15.2 B -15.6

Date:17/02/98

Pexhm 34 torr

P_{exh}= 241 mbar

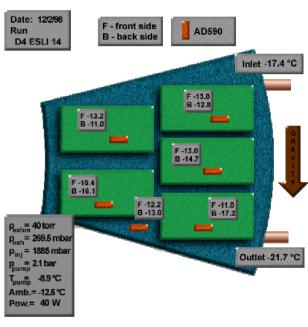
p_{ini} =1591 mbar


p =1.85 bar T_{num} -9.4°C

Amb.=-8.5 °C

Pow.= 40 W

Run D4 ESLI 35


C4F10 COOLING

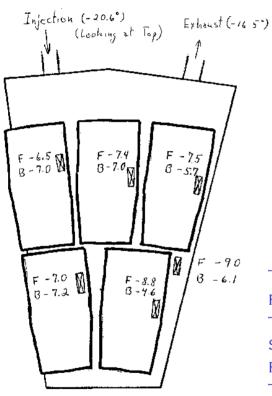
SECTORS WERE TESTED IN MULTIPLE ORIENTATIONS TO SEE IF EVAPORATIVE COOLING WAS FEASIBLE FOR A SECTOR IN TIME FOR THE TDR.

Date: 13/02/98 p_{exhm}=250 torr p_{exh}=345 mbar **D4 ESLI 25** p_{ini} = 1721 mbar p = 1.95 bar AD590 F -6.0 B -10.1 T_{pump} -9.5 °C F -7.3 B -8.2 Amb.=-10.4 °C Pow.= 39.5 W F - front side B - back side F -6.7 B -10.0 F -7.1 B -8.8 F -7.8 B -7.6 F -5.9 B -9.9 Inlet -16.7 °C Outlet -20.3 °C

SECTOR FEASIBILITY STUDY

THE OPERATING CONDITIONS HERE ARE UNREALISTIC AS THE EXHAUST PRESSURE IS FAR TOO LOW (~250MBAR).

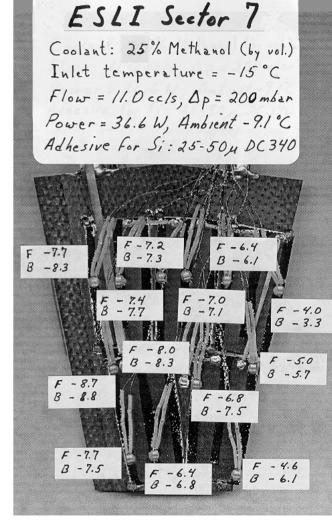
POWER IS 40W


PIXEL DETECTOR INTEGRATION

E. ANDERSSEN LBNL/CERN

MAY 99 ID COOLING REVIEW

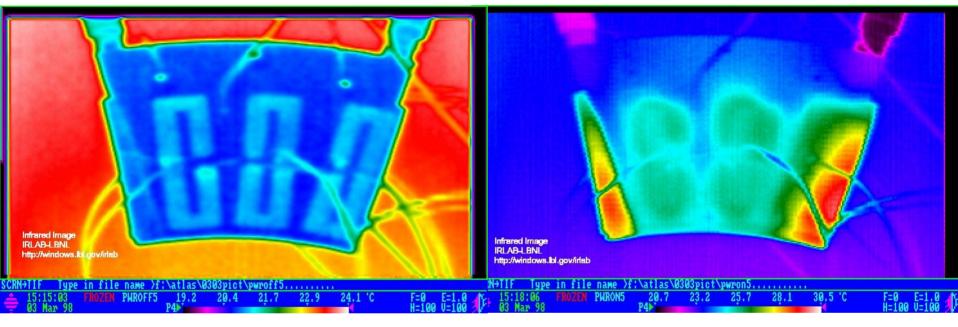
C4F10 vs. Methanol/Water


ESLI Sector 4

COMPARISON BETWEEN **EVAPORATIVE AND WATER** COOLING WAS MADE AS INSTITUTES WILL NOT ALL BUILD EVAPORATIVE RIGS BUT WILL NEED TO ASSESS **STRUCTURES**

THIS TEST ILLUSTRATES THAT A REASONABLE ESTIMATE OF THE TEMPERATURES OF THE STRUCTURE CAN BE MADE BY RUNNING A FLUID AT CLOSE TO THE EXHAUST TEMPERATURE OF

THE EVAPORATIVE SYSTEM


Coolant: Evaporated CyFio

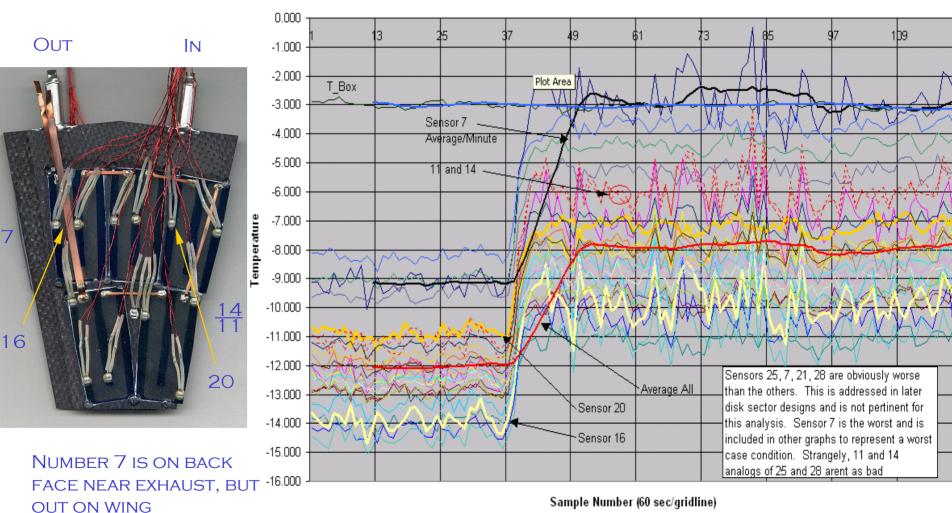
Power: 36.3 W, Ambient -8/-4

Adhesive for Silicon: 125m of CGL7018

MAY 99 ID COOLING REVIEW

HEAT TRANSFER PROBLEMS

NO POWER CONDITION-HEATER TRACES ARE SEEN DUE TO DIFFERENCE IN EMISSIVITY

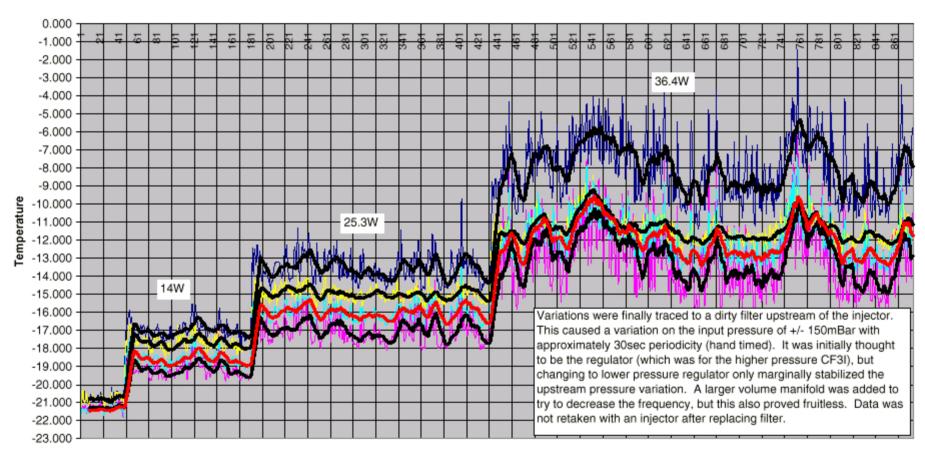

MONOPHASE FLOW AT HALF REQUIRED TO REMOVE HEAT (36W) ~5cc/sec

- IT IS IMPORTANT TO TRY TO DISTINGUISH WHAT IS A PROBLEM WITH THE STRUCTURE FROM WHAT IS A PROBLEM WITH THE COOLING
- MONOPHASE RESULTS, EVEN AT ROOM TEMPERATURE ARE USEFUL FOR THIS.

"WINGS" ARE HARD TO COOL

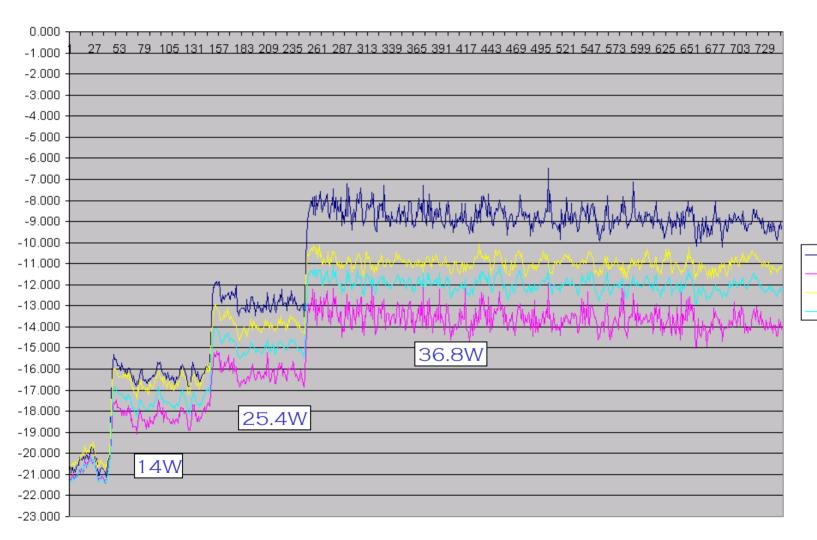
Jump from 36.5W to 49.5W

Sample Number (60 sec/gridline)

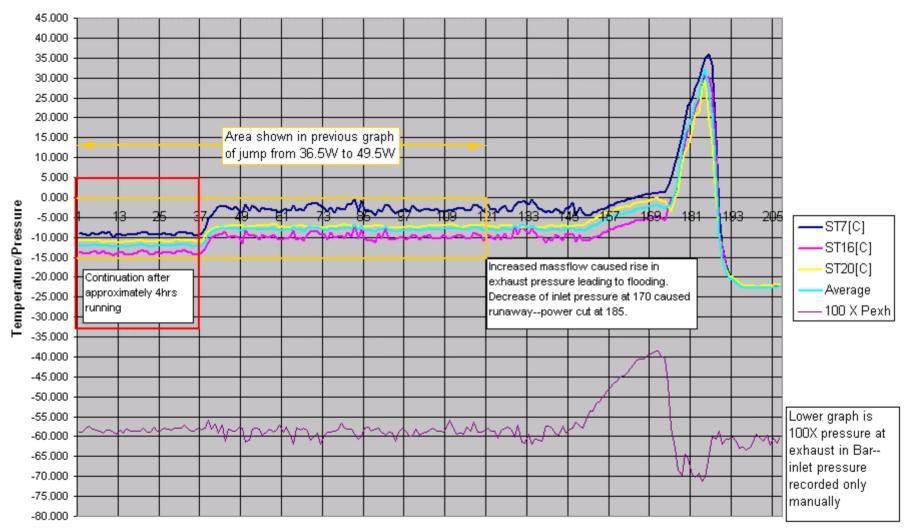

MAY 99 ID COOLING REVIEW

COROLLARY: PERFORMANCE IS BOUNDED BY THE WINGS

VARIABILITY IN TEMPERATURE


Power Ramp (Ruby Injector) --not too stable

Time (1minute/gridline)


CAPILLARY

— ST7[C] — ST16[C] — ST20[C] — average

End of Run at Full Power

Sample number (60s per gridline)

RUNSHEET DATA FOR DISK DATA SHOWN

Run #17

Changed to Capillary and Large volume manifold. Fixed Box and Injector Temperature sensors Long Run

Power at Sampletime: 13.9 @ 46
Power at Sampletime: 25.1 @ 148
Power at Sampletime: 36.7 @ 246

File name: LBL S17.efd

CSV: LBL S17.csv

Fluid: C4F10

Time saved:

	Pressure	Temperature
Box Environment	-	*+5.7
Upstream of injector	2.5bg +/-	*+13.4
	0.0mb	
Downstream of injector	51bg +/-	*-18.3
-	20mb	
Exhaust	*60bg	*-18
Condenser	5.35babs	+16.4
Buffer	200Tabs	-

Run #18

This is an extension of run 17. Box temperature was steadily decreasing.

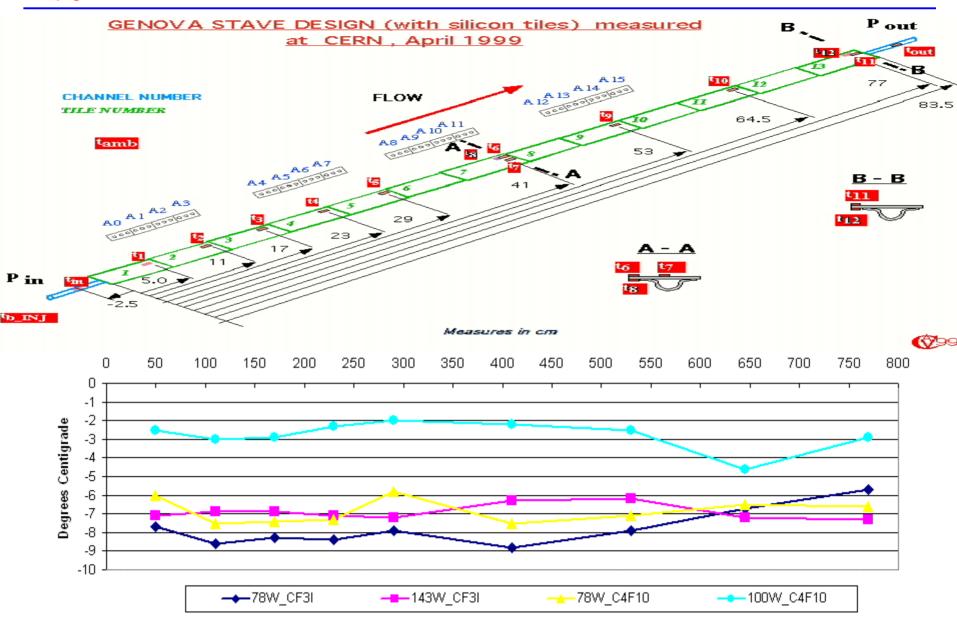
Recording started some 4hrs after last data taken from run 17 Long Run

> Power at Sampletime: 36.5 @ 0 Power at Sampletime: 48.0 @ 44 Power at Sampletime: 49.9 @ 47 Increase Pupstream → 3b @ 134

Decrease P upstream → 2.4 @ 157

File name: LBL_S18.efd

CSV: LBL S18.csv


Fluid: C4F10

Time saved:

	Pressure	Temperature
Box Environment	-	*-3.1
Upstream of injector	2.45bg +/-	*+11.87
	0.0mb	
Downstream of injector	50bg +/-	*-18.5
-	20mb	
Exhaust	*58bg	*-19.3
Condenser	5.55babs	+15.9
Buffer	200Tabs	-

THIS IS THE DATA FOR THE LONGEST RUN RECORDED. THE DATA FOR THE RUBY INJECTOR WAS THE SAME.

May 99 ID Cooling Review

PIXEL DETECTOR INTEGRATION

E. ANDERSSEN LBNL/CERN

CONCLUSIONS

- POWER INCREASES NECESSITATE SOME CHANGES IN THE COOLING STRUCTURE, PARTICULARLY THE STAVE, BUT POSSIBLY THE SECTOR.
- IT IS NOT CLEAR WHAT PORTION OF THE PRESSURE DROP IS ATTRIBUTABLE TO THE COOLED STRUCTURES AND WHICH PART TO THE COOLING SETUP-THIS MUST BE ADDRESSED IN A PHASE II RIG
- EVAPORATIVE COOLING WORKS TO PIXEL SPECIFICATION, AS APPARENTLY DO CAPILLARIES
- C4F10 is possibly too low a pressure to be viable for the production rig
- CF3I LOOKS PROMISING THERMODYNAMICALLY, BUT HAS PROBLEMS WITH COMPATIBILITY
- TIME CONSTANTS AND STABILITY NEED TO BE BETTER UNDERSTOOD

